mes_3.tex 3.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125
  1. \documentclass{report}
  2. %\batchmode
  3. \usepackage{latexsym}
  4. \usepackage[T2A]{fontenc}
  5. \usepackage[cp1251]{inputenc}
  6. \usepackage[russian]{babel}
  7. \usepackage{mathtext}
  8. \righthyphenmin=2
  9. \oddsidemargin=0pt
  10. \textwidth=18cm
  11. \topmargin=0cm
  12. \textheight=23cm
  13. \begin{document}
  14. $S_{12}$ -- ïëîùàäü ïåðåñå÷åíèÿ 1 è 2 îêðóæíîñòåé;
  15. $S_{23}$ -- ïëîùàäü ïåðåñå÷åíèÿ 2 è 3 îêðóæíîñòåé;
  16. $S_2$ -- ïëîùàäü 2é îêðóæíîñòè.
  17. Ïëîùàäü ôèãóðû íàéäåì ïî ôîðìóëå \ref{first}:
  18. \begin{equation}
  19. \label{first}
  20. {\bf mes}\:\Omega_{inters} = S_2 - (S_2-S_{12}) - (S_2-S_{23})
  21. \end{equation}
  22. Èëè, ïîñëå ðàñêðûòèÿ ñêîáîê:
  23. \begin{equation}
  24. \label{second}
  25. {\bf mes}\:\Omega_{inters} = S_{12}+S_{23}-S_2
  26. \end{equation}
  27. $S_{12}$ è $S_{23}$ áûëè íàéäåíû ðàíåå, äëÿ ìîìåíòîâ II ïîðÿäêà, $S_2=\pi r_2^2$.  ðåçóëüòàòå ïîäñòàíîâêè ïîëó÷àåì ôîðìóëó \ref{end}:
  28. \begin{equation}
  29. \label{end}
  30. \begin{array}{rcl}
  31. {\bf mes}\:\Omega_{inters} = r_2^2\cdot
  32. \left(
  33. \arccos\left[\frac{1}{2R_{12}r_2}\cdot\left(r_2^2-r_1^2+R_{12}^2\right)\right]+
  34. \arccos\left[\frac{1}{2R_{23}r_2}\cdot\left(r_2^2-r_1^2+R_{23}^2\right)\right]-\pi
  35. \right)+\\
  36. {}+
  37. r_1^2\arccos\left[\frac{1}{2R_{12}r_1}\cdot\left(r_1^2-r_2^2+R_{12}^2\right)\right]+
  38. r_3^2\arccos\left[\frac{1}{2R_{23}r_3}\cdot\left(r_3^2-r_2^2+R_{23}^2\right)\right]-\\
  39. {}-2\cdot\left(
  40. \sqrt{p_1(p_1-r_1)(p_1-r_2)(p_1-R_{12})}+
  41. \sqrt{p_2(p_2-r_3)(p_2-r_2)(p_2-R_{23})}
  42. \right)
  43. \end{array}
  44. \end{equation}
  45. \begin{equation}
  46. \label{p1}
  47. p_1=\frac{1}{2}\cdot\left(r_1+r_2+R_{12}\right)
  48. \end{equation}
  49. \begin{equation}
  50. \label{p2}
  51. p_2=\frac{1}{2}\cdot\left(r_3+r_2+R_{23}\right)
  52. \end{equation}
  53. Ðàññìîòðèì ÷àñòíûå ñëó÷àè:
  54. \begin{enumerate}
  55. \item $r_i=r_j \ne r_k, i \ne j \ne k$:
  56. \begin{equation}
  57. \label{rierj}
  58. \bf K_{\lambda}^{(3)}(r_i,r_i,r_k) = \left<\lambda(r_i)\lambda(r_i)\lambda(r_k)\right>-\nu_f \left[\left<\lambda(r_i)\lambda(r_i)\right>+2\left<\lambda(r_i)\lambda(r_k)\right>\right]+2\nu_f^3
  59. \end{equation}
  60. \begin{equation}
  61. \label{lililkf}
  62. \begin{array}{rcl}
  63. \bf\left<\lambda(r_i)\lambda(r_i)\lambda(r_k)\right> =
  64. Prob(r_i \in \Omega_f \land r_i \in \Omega_f \land r_k \in \Omega_f) = {}\\
  65. \bf{}=Prob \left[r_i \in \Omega_f \mid (r_i \in \Omega_f \land r_k \in \Omega_f)\right]\times{}\\
  66. \bf{}\times Prob\left[r_i \in \Omega_f \mid r_k \in \Omega_f\right]Prob\left[r_k \in \Omega_f\right]
  67. \end{array}
  68. \end{equation}
  69. \begin{equation}
  70. \label{lililks}
  71. \begin{array}{rcl}
  72. \bf\left<\lambda(r_i)\lambda(r_i)\lambda(r_k)\right> =
  73. Prob(r_i \in \Omega_f \land r_k \in \Omega_f)Prob(r_i \in \Omega_f \mid r_k \in \Omega_f)Prob(r_k \in \Omega_f)={}\\
  74. \bf{}=Prob(r_i \in \Omega_f \mid r_k \in \Omega_f) \cdot\nu_f\cdot Prob(r_i \in \Omega_f \mid r_k \in \Omega_f)Prob(r_k \in \Omega_f)
  75. \end{array}
  76. \end{equation}
  77. \begin{equation}
  78. \label{lililkt}
  79. \bf\left<\lambda(r_i)\lambda(r_i)\lambda(r_k)\right> =
  80. \frac{mes(\Omega_f^i \cap \Omega_f^k)}{mes(\Omega_f)}\cdot\nu_f\cdot\frac{mes(\Omega_f^i \cap \Omega_f^k)}{mes\Omega_f}\cdot\nu_f=\left(\frac{mes(\Omega_f^i \cap \Omega_f^k)}{mes\widehat{\Omega}}\right)^2
  81. \end{equation}
  82. \begin{equation}
  83. \label{lili}
  84. \bf\left<\lambda(r_i)\lambda(r_i)\right>=Prob(r_i \in \Omega_f \land r_i \in \Omega_f)=Prob(r_i \in \Omega_f)=\nu_f
  85. \end{equation}
  86. \begin{equation}
  87. \label{lilk}
  88. \bf\left<\lambda(r_i)\lambda(r_k)\right>=Prob(r_i \in \Omega_f \mid r_k \in \Omega_f)\cdot\nu_f=\frac{mes(\Omega_f^i \cap \Omega_f^k)}{mes\widehat{\Omega}}
  89. \end{equation}
  90. \begin{equation}
  91. \label{kiikend}
  92. \begin{array}{rcl}
  93. \bf K_{\lambda}^{(3)}(r_i,r_i,r_k)=
  94. \left[\frac{mes(\Omega_f^i \cap \Omega_f^k)}{mes\widehat{\Omega}}\right]^2-
  95. \nu_f\cdot\left[\nu_f+2\frac{mes(\Omega_f^i \cap \Omega_f^k)}{mes\widehat{\Omega}}\right]+2\nu_f^3={}\\
  96. \bf{}=\frac{mes(\Omega_f^i \cap \Omega_f^k)}{mes\widehat{\Omega}}\left[\frac{mes(\Omega_f^i \cap \Omega_f^k)}{mes\widehat{\Omega}}-2\nu_f\right]-\nu_f^2+2\nu_f^3
  97. \end{array}
  98. \end{equation}
  99. \end{enumerate}
  100. \end{document}