| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125 |
- \documentclass{report}
- %\batchmode
- \usepackage{latexsym}
- \usepackage[T2A]{fontenc}
- \usepackage[cp1251]{inputenc}
- \usepackage[russian]{babel}
- \usepackage{mathtext}
- \righthyphenmin=2
- \oddsidemargin=0pt
- \textwidth=18cm
- \topmargin=0cm
- \textheight=23cm
- \begin{document}
- $S_{12}$ -- ïëîùàäü ïåðåñå÷åíèÿ 1 è 2 îêðóæíîñòåé;
- $S_{23}$ -- ïëîùàäü ïåðåñå÷åíèÿ 2 è 3 îêðóæíîñòåé;
- $S_2$ -- ïëîùàäü 2é îêðóæíîñòè.
- Ïëîùàäü ôèãóðû íàéäåì ïî ôîðìóëå \ref{first}:
- \begin{equation}
- \label{first}
- {\bf mes}\:\Omega_{inters} = S_2 - (S_2-S_{12}) - (S_2-S_{23})
- \end{equation}
- Èëè, ïîñëå ðàñêðûòèÿ ñêîáîê:
- \begin{equation}
- \label{second}
- {\bf mes}\:\Omega_{inters} = S_{12}+S_{23}-S_2
- \end{equation}
- $S_{12}$ è $S_{23}$ áûëè íàéäåíû ðàíåå, äëÿ ìîìåíòîâ II ïîðÿäêà, $S_2=\pi r_2^2$.  ðåçóëüòàòå ïîäñòàíîâêè ïîëó÷àåì ôîðìóëó \ref{end}:
- \begin{equation}
- \label{end}
- \begin{array}{rcl}
- {\bf mes}\:\Omega_{inters} = r_2^2\cdot
- \left(
- \arccos\left[\frac{1}{2R_{12}r_2}\cdot\left(r_2^2-r_1^2+R_{12}^2\right)\right]+
- \arccos\left[\frac{1}{2R_{23}r_2}\cdot\left(r_2^2-r_1^2+R_{23}^2\right)\right]-\pi
- \right)+\\
- {}+
- r_1^2\arccos\left[\frac{1}{2R_{12}r_1}\cdot\left(r_1^2-r_2^2+R_{12}^2\right)\right]+
- r_3^2\arccos\left[\frac{1}{2R_{23}r_3}\cdot\left(r_3^2-r_2^2+R_{23}^2\right)\right]-\\
- {}-2\cdot\left(
- \sqrt{p_1(p_1-r_1)(p_1-r_2)(p_1-R_{12})}+
- \sqrt{p_2(p_2-r_3)(p_2-r_2)(p_2-R_{23})}
- \right)
- \end{array}
- \end{equation}
- \begin{equation}
- \label{p1}
- p_1=\frac{1}{2}\cdot\left(r_1+r_2+R_{12}\right)
- \end{equation}
- \begin{equation}
- \label{p2}
- p_2=\frac{1}{2}\cdot\left(r_3+r_2+R_{23}\right)
- \end{equation}
- Ðàññìîòðèì ÷àñòíûå ñëó÷àè:
- \begin{enumerate}
- \item $r_i=r_j \ne r_k, i \ne j \ne k$:
- \begin{equation}
- \label{rierj}
- \bf K_{\lambda}^{(3)}(r_i,r_i,r_k) = \left<\lambda(r_i)\lambda(r_i)\lambda(r_k)\right>-\nu_f \left[\left<\lambda(r_i)\lambda(r_i)\right>+2\left<\lambda(r_i)\lambda(r_k)\right>\right]+2\nu_f^3
- \end{equation}
- \begin{equation}
- \label{lililkf}
- \begin{array}{rcl}
- \bf\left<\lambda(r_i)\lambda(r_i)\lambda(r_k)\right> =
- Prob(r_i \in \Omega_f \land r_i \in \Omega_f \land r_k \in \Omega_f) = {}\\
- \bf{}=Prob \left[r_i \in \Omega_f \mid (r_i \in \Omega_f \land r_k \in \Omega_f)\right]\times{}\\
- \bf{}\times Prob\left[r_i \in \Omega_f \mid r_k \in \Omega_f\right]Prob\left[r_k \in \Omega_f\right]
- \end{array}
- \end{equation}
- \begin{equation}
- \label{lililks}
- \begin{array}{rcl}
- \bf\left<\lambda(r_i)\lambda(r_i)\lambda(r_k)\right> =
- Prob(r_i \in \Omega_f \land r_k \in \Omega_f)Prob(r_i \in \Omega_f \mid r_k \in \Omega_f)Prob(r_k \in \Omega_f)={}\\
- \bf{}=Prob(r_i \in \Omega_f \mid r_k \in \Omega_f) \cdot\nu_f\cdot Prob(r_i \in \Omega_f \mid r_k \in \Omega_f)Prob(r_k \in \Omega_f)
- \end{array}
- \end{equation}
- \begin{equation}
- \label{lililkt}
- \bf\left<\lambda(r_i)\lambda(r_i)\lambda(r_k)\right> =
- \frac{mes(\Omega_f^i \cap \Omega_f^k)}{mes(\Omega_f)}\cdot\nu_f\cdot\frac{mes(\Omega_f^i \cap \Omega_f^k)}{mes\Omega_f}\cdot\nu_f=\left(\frac{mes(\Omega_f^i \cap \Omega_f^k)}{mes\widehat{\Omega}}\right)^2
- \end{equation}
- \begin{equation}
- \label{lili}
- \bf\left<\lambda(r_i)\lambda(r_i)\right>=Prob(r_i \in \Omega_f \land r_i \in \Omega_f)=Prob(r_i \in \Omega_f)=\nu_f
- \end{equation}
- \begin{equation}
- \label{lilk}
- \bf\left<\lambda(r_i)\lambda(r_k)\right>=Prob(r_i \in \Omega_f \mid r_k \in \Omega_f)\cdot\nu_f=\frac{mes(\Omega_f^i \cap \Omega_f^k)}{mes\widehat{\Omega}}
- \end{equation}
- \begin{equation}
- \label{kiikend}
- \begin{array}{rcl}
- \bf K_{\lambda}^{(3)}(r_i,r_i,r_k)=
- \left[\frac{mes(\Omega_f^i \cap \Omega_f^k)}{mes\widehat{\Omega}}\right]^2-
- \nu_f\cdot\left[\nu_f+2\frac{mes(\Omega_f^i \cap \Omega_f^k)}{mes\widehat{\Omega}}\right]+2\nu_f^3={}\\
- \bf{}=\frac{mes(\Omega_f^i \cap \Omega_f^k)}{mes\widehat{\Omega}}\left[\frac{mes(\Omega_f^i \cap \Omega_f^k)}{mes\widehat{\Omega}}-2\nu_f\right]-\nu_f^2+2\nu_f^3
- \end{array}
- \end{equation}
- \end{enumerate}
- \end{document}
|