| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274 |
- \section{Построение моментных функций третьего порядка случайной структуры волокнистых композитов}
- Обобщим полученные результаты с целью получения аналитических выражений для моментных функций третьего порядка. Задача построения моментных функций третьего порядка случайной структуры двухфазных композитов матричного типа также связана с нахождением геометрических вероятностей \ref{l1}.
- \begin{equation}
- \label{k3}
- \begin{array}{ll}
- K_\lambda^{(3)}(r_1,r_2,r_3)&\equiv\left<\lambda^\circ(r_1)\lambda^\circ(r_2)\lambda^\circ(r_3)\right>=\left<\lambda(r_1)\lambda(r_2)\lambda(r_3)\right>-{}\\
- {}&-\nu_f\left[\left<\lambda(r_1)\lambda(r_2)\right>+\left<\lambda(r_1)\lambda(r_3)\right>+\left<\lambda(r_2)\lambda(r_3)\right>\right]+2\nu_f^3
- \end{array}
- \end{equation}
- Введем множества точек $\Omega_f$ , $\Omega'_f$ и $\Omega''_f$, принадлежащих включениям прообраза $\widehat{\Omega}$ и образов $\widehat{\Omega}'$ и $\widehat{\Omega}''$ соответственно. Образы $\widehat{\Omega}'$ и $\widehat{\Omega}''$ получены в результате параллельного переноса $\widehat{\Omega}$ на расстояния, определяемые векторами трансляции Взаимная ориентация этих векторов относительно неподвижной системы координат, связанной с $\widehat{\Omega}$, определяется углом $\Theta$, а взаимная ориентация --- углом $\phi$ (рис. \ref{obraz}). Обратим внимание на то, для статистически изотропного случайного поля структуры аргументами моментной функции третьего порядка будут $|\Delta r_1|$, $|\Delta r_2|$ и $\phi$.
- Тогда геометрическим смыслом условной вероятности $Prob\left[r_1 \in \Omega_f\mid(r_2\in\Omega_f\land r_3\in\Omega_f)\right]$, которая содержится в выражении (\ref{k3}) в виде произведения
- \begin{equation}
- \label{ml3}
- \begin{array}{ll}
- \left<\lambda(r_1)\lambda(r_2)\lambda(r_3)\right>&
- =Prob\left(r_1\in\Omega_f\land r_2\in\Omega_f\land r_3\in\Omega_f\right)={}\\
- {}&=Prob\left[r_1 \in\Omega_f\mid(r_2\in\Omega_f\land r_3\in\Omega_f)\right]\times{}\\
- {}&\times Prob\left[r_2\in\Omega_f\mid r_3\in\Omega_f\right]Prob\left[r_3\in\Omega_f\right]
- \end{array}
- \end{equation}
- является мера $mes(\Omega_f\cap\Omega'_f\cap\Omega''_f)$ множества точек, получаемых при пересечении включений, принадлежащих $\widehat{\Omega}$, $\widehat{\Omega}'$ и $\widehat{\Omega}''$ (рис. \ref{obraz}). Следовательно, используя для $Prob\left[r_2\in\Omega_f\mid r_3\in\Omega_f\right]$ представление (\ref{prob_r1r2}) и, учитывая, что $Prob\left[r_3\in\Omega_f\right]\equiv\nu_f$, из соотношения (\ref{ml3}) получим:
- \begin{equation}
- \label{ml3_p}
- \left<\lambda(r_1)\lambda(r_2)\lambda(r_3)\right>=\frac{mes(\Omega_f\cap\Omega'_f\cap\Omega''_f)}{mes\Omega''_f}\nu_f.
- \end{equation}
- Таким образом, заменяя в выражении (\ref{k3}) группу слагаемых, содержащих общий множитель $\nu_f$, соответствующими представлениями (\ref{ml2}) и принимая во внимание (\ref{ml3_p}), представим моментную функции третьего порядка случайной структуры двухфазного композита запишем следующим образом:
- \begin{equation}
- \label{k3_end}
- \begin{array}{ll}
- K_\lambda^{(3)}(R_1,R_2,\phi)&=\nu_f\left\{\frac{mes(\Omega_f\cap\Omega'_f\cap\Omega''_f)}{mes\Omega''_f}-\right.\\
- {}&\left.-\nu_f\left[\frac{mes(\Omega_f\cap\Omega'_f)}{mes\Omega'_f}+\frac{mes(\Omega_f\cap\Omega''_f)}{mes\Omega''_f}+\frac{mes(\Omega'_f\cap\Omega''_f)}{mes\Omega''_f}\right]\right\}+2\nu_f^3
- \end{array}
- \end{equation}
- или
- \begin{equation}
- \label{k3_mr}
- \begin{array}{ll}
- K_\lambda^{(3)}(R_1,R_2,\phi)&=\frac{\nu_f}{mes\Omega_f}\left\{mes(\Omega_f\cap\Omega'_f\cap\Omega''_f)-\nu_f\left[mes(\Omega_f\cap\Omega'_f)+\right.\right.{}\\
- {}&\left.\left.+mes(\Omega_f\cap\Omega''_f)+mes(\Omega'_f\cap\Omega''_f)\right]\right\}+2\nu_f^3={}\\
- {}&\frac{\nu_f}{mes\Omega_f}\sum_{i=1}^N\left\{mes(\Omega_i\cap\Omega'_i\cap\Omega''_i)-\nu_f\left[mes(\Omega_i\cap\Omega'_i)+\right.\right.{}\\
- {}&\left.\left.+mes(\Omega_i\cap\Omega''_i)+mes(\Omega'_i\cap\Omega''_i)\right]\right\}+{}\\
- {}&+\frac{\nu_f}{mes\Omega_f}\sum_{i=1}^N\sum_{j=1}^N\sum_{k=1}{N}(1-\delta_{ijk})\left\{mes(\Omega_i\cap\Omega'_j\cap\Omega''_k)-\right.{}\\
- {}&\left.-\nu_f\left[mes(\Omega_i\cap\Omega'_j)+mes(\Omega_i\cap\Omega''_k)+mes(\Omega'_j\cap\Omega''_k)\right]\right\}+2\nu_f^3.
- \end{array}
- \end{equation}
- Здесь $R_1=|\Delta r_1|$ и $R_2=|\Delta r_2|$; $\delta_{ijk}$ --- коэффициенты, принимающие значения 1 при совпадающих индексах и 0, если хотя бы один из трех индексов отличается от двух других различны (при $i,j=1\dots3$ эти коэффициенты являются обобщенными символами Кронекера).
- Преимуществом аналитического представления (\ref{k3_mr}) очевидны. В выражении (\ref{k3_mr}) появляется возможность в явном виде выделить слагаемые, соответствующие приближению "малых расстояний"
- \begin{equation}
- \label{mr}
- \begin{array}{ll}
- K_\lambda^{(3)}(R_1,R_2,\phi)&=\frac{\nu_f}{mes\Omega_f}\sum_{i=1}^N\left\{mes(\Omega_i\cap\Omega'_i\cap\Omega''_i)-\nu_f\left[mes(\Omega_i\cap\Omega'_i)+\right.\right.{}\\
- {}&\left.\left.+mes(\Omega_i\cap\Omega''_i)+mes(\Omega'_i\cap\Omega''_i)\right]\right\}+2\nu_f^3
- \end{array}
- \end{equation}
- при наложении на аргументы $R_1$ и $R_2$ ограничений
- \begin{equation}
- \label{usl}
- R_1\le min\left[D_{min},d_{min}\right], R_2\le min\left[D_{min},d_{min}\right]
- \end{equation}
- при произвольном выборе угла $\phi$. Эти условия обеспечивают пересечение $i$-го включения образа с $i$-ми включениями прообразов $(\Omega_i\cap\Omega'_i\cap\Omega''_i)$.
- Из анализа условий сходимости рядов (\ref{k3_mr}) также может быть получена информация о характере затухания статистических моментов третьего порядка. Существование конечного передела позволит определить асимптоты, вокруг которых происходит осцилляция моментных функций, а анализ знака сумм, входящих в выражения (\ref{k3_mr}) --- определить наличие или отсутствие периодических стравляющих в случайных полях структуры.
- Для конкреттизации слагаемых, входящих в выражение \ref{k3_mr}, рассмотрим ряд вспомогательных геометрических задач по пересечению трех окружностей. Возможны следующие варианты пересечения окружностей:
- \begin{enumerate}
- \item Все три включения совпадают если одновременно выполняются следующие условия:
- $$
- r_i=r_j, r_j=r_k, r_i=r_k, R_{ij}=0.0, R_{ik}=0.0, R_{jk}=0.0;
- $$
- В этом случае площадь пересечения трех окружностей равна $\pi\cdot r_i^2.$
- \item Одно из включений не пересекается с другими если выполняется одно из следующих условий:
- $$
- R_{ij}\ge r_i+r_j, R_{ik}\ge r_i+r_k, R_{jk}\ge r_j+r_k.
- $$
- Площадь пересечения трех окружностей равна нулю.
- \item
- \begin{figure}[!h]
- \caption{$i$ совпадает с $j$ и лежит внутри $k$}
- \label{p3}
- \includegraphics{./ris/3}
- \end{figure}
- $i$ совпадает с $j$ и лежит внутри $k$ (рис. \ref{p3}):
- $$
- r_i=r_j, R_{ij}=0.0, r_k \ge R_{jk}+r_j.
- $$
- Площадь пересечения трех окружностей равна $\pi\cdot r_i^2.$
- \item
- \begin{figure}[!h]
- \caption{$i$ совпадает с $j$ и $k$ лежит внутри}
- \label{p4}
- \includegraphics{./ris/4}
- \end{figure}
- $i$ совпадает с $j$ и $k$ лежит внутри (рис. \ref{p4}):
- $$
- r_i=r_j, R_{ij}=0.0, r_i\ge R_{jk}+r_k.
- $$
- Площадь пересечения трех окружностей: $\pi\cdot r_k^2.$
- \item
- \begin{figure}[!h]
- \caption{$i$ лежит внутри пересечения $j$ и $k$}
- \label{p5}
- \includegraphics{./ris/5}
- \end{figure}
- $i$ лежит внутри пересечения $j$ и $k$ (рис. \ref{p5}):
- $$
- R_{jk}<r_j+r_k, r_k\ge R_{ik}+r_i, r_j\ge R_{ij}+r_i.
- $$
- Площадь пересечения трех окружностей: $\pi\cdot r_i^2.$
- \item
- \begin{figure}[!h]
- \caption{$i$ лежит внутри $j$ и $k$, которые не совпадают}
- \label{p6}
- \includegraphics{./ris/6}
- \end{figure}
- $i$ лежит внутри $j$ и $k$, которые не совпадают (рис. \ref{p6}):
- $$
- r_k\ge r_j+R_{jk}, r_j\ge r_i+R_{ij};
- $$ или
- $$
- r_j\ge r_k+R_{jk}, r_k\ge r_i+R_{ik}.
- $$
- Площадь пересечения трех окружностей равна $\pi\cdot r_i^2.$
- \item
- \begin{figure}[!h]
- \caption{$i$ и $j$ лежат внутри $k$ и пересекаются}
- \label{p7}
- \includegraphics{./ris/7}
- \end{figure}
- $i$ и $j$ лежат внутри $k$ и пересекаются (рис. \ref{p7}):
- $$
- r_k\ge r_i+R_{ik}, r_k\ge r_j+R_{jk}, R_{ij}<r_i+r_j.
- $$
- Площадь пересечения равна
- \begin{equation}
- \begin{array}{lr}
- k=&r_i^2\cdot\arccos\left[\frac{1.0}{2\cdot R_{ij}\cdot r_i}\cdot\left(r_i^2-r_j^2+R_{ij}^2\right)\right]+r_j^2\cdot\arccos\left[\frac{1.0}{2\cdot R_{ij}\cdot r_j}\cdot\left(r_j^2-r_i^2+R_{ij}^2\right)\right]-{}\\
- &{}-2\cdot\sqrt{p\cdot(p-r_i)\cdot(p-r_j)\cdot(p-R_{ij})},
- \end{array}
- \end{equation}
- $$
- p=\frac{1.0}{2.0}\cdot(r_i+r_j+R_{ij}).
- $$
- \item
- \begin{figure}[!h]
- \caption{Взаимное пересечение трех включений}
- \label{p8}
- \includegraphics{./ris/8}
- \end{figure}
- Случай, показанный на рис. \ref{p8} - если выполняются оба условия:
- $R^{(l)}_{jx_{ik}}$ - расстояние от центра $j$ окружности до $l$-той точки пересечения $i$ и $k$ окружностей.
- $$
- r_j<R^{(1)}_{jx_{ik}}, r_j>R^{(2)}_{jx_{ik}}
- $$
- \item Случай, показанный на рис. \ref{p9} - если выполняются оба условия:
- $R^{(l)}_{jx_{ik}}$ - расстояние от центра $j$ окружности до $l$-той точки пересечения $i$ и $k$ окружностей.
- $$
- r_j<R^{(1)}_{jx_{ik}}, r_j<R^{(2)}_{jx_{ik}}
- $$
- Площадь пресечения равна:
- \begin{equation}
- \begin{array}{lc}
- k=r_j^2\cdot\left(\arccos\left[\frac{r_j^2-r_i^2+R_{ij}^2}{2.0\cdot R_{ij}\cdot r_j}\right]+\arccos\left[\frac{r_j^2-r_k^2+R_{jk}^2}{2.0\cdot R_{jk}\cdot r_j}\right]-\pi\right)+{}\\
- {}+r_i^2\cdot\arccos\left[\frac{r_i^2-r_j^2+R_{ij}^2}{2.0\cdot R_{ij}\cdot r_i}\right]+r_k^2\cdot\arccos\left[\frac{r_k^2-r_j^2+R_{jk}^2}{2.0\cdot R_{jk}\cdot r_k}\right]-{}\\
- {}-2.0\cdot\left(\sqrt{p_1\cdot(p_1-r_i)\cdot(p_1-r_j)\cdot(p_1-R_{ij})}+\sqrt{p_2\cdot(p_2-r_k)\cdot(p_2-r_j)\cdot(p_2-R_{jk})}\right)
- \end{array}
- \end{equation}
- $$
- p_1=\frac{1.0}{2.0}\cdot\left(r_i+r_j+R_{ij}\right);
- $$
- $$
- p_2=\frac{1.0}{2.0}\cdot\left(r_k+r_j+R_{jk}\right).
- $$
- \item
- \begin{figure}[!th]
- \caption{Взаимное пересечение трех включений}
- \label{p10}
- \includegraphics{./ris/10}
- \end{figure}
- Случай, показанный на рис. \ref{p10} - если выполняются оба условия:
- $R^{(l)}_{jx_{ik}}$ - расстояние от центра $j$ окружности до $l$-той точки пересечения $i$ и $k$ окружностей.
- $$
- r_j>R^{(1)}_{jx_{ik}}, r_j>R^{(2)}_{jx_{ik}}
- $$
- Площадь пресечения равна:
- \begin{equation}
- \begin{array}{lr}
- k=&r_i^2\cdot\arccos\left[\frac{1.0}{2\cdot R_{ij}\cdot r_i}\cdot\left(r_i^2-r_j^2+R_{ij}^2\right)\right]+r_j^2\cdot\arccos\left[\frac{1.0}{2\cdot R_{ij}\cdot r_j}\cdot\left(r_j^2-r_i^2+R_{ij}^2\right)\right]-{}\\
- &{}-2\cdot\sqrt{p\cdot(p-r_i)\cdot(p-r_j)\cdot(p-R_{ij})},
- \end{array}
- \end{equation}
- $$
- p=\frac{1.0}{2.0}\cdot(r_i+r_j+R_{ij}).
- $$
- \end{enumerate}
- \begin{figure}[!h]
- \caption{$i$ совпадает с $j$ и лежит внутри $k$}
- \label{p3}
- \includegraphics{./ris/3}
- \end{figure}
- \begin{figure}[!h]
- \caption{$i$ совпадает с $j$ и $k$ лежит внутри}
- \label{p4}
- \includegraphics{./ris/4}
- \end{figure}
- \begin{figure}[!h]
- \caption{$i$ лежит внутри пересечения $j$ и $k$}
- \label{p5}
- \includegraphics{./ris/5}
- \end{figure}
- \begin{figure}[!h]
- \caption{$i$ лежит внутри $j$ и $k$, которые не совпадают}
- \label{p6}
- \includegraphics{./ris/6}
- \end{figure}
- \begin{figure}[!h]
- \caption{$i$ и $j$ лежат внутри $k$ и пересекаются}
- \label{p7}
- \includegraphics{./ris/7}
- \end{figure}
- \begin{figure}[!h]
- \caption{Взаимное пересечение трех включений}
- \label{p8}
- \includegraphics{./ris/8}
- \end{figure}
- \begin{figure}[!h]
- \caption{Взаимное пересечение трех включений}
- \label{p9}
- \includegraphics{./ris/9}
- \end{figure}
- \begin{figure}[!th]
- \caption{Взаимное пересечение трех включений}
- \label{p10}
- \includegraphics{./ris/10}
- \end{figure}
|